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ABSTRACT

Recent numerical modeling studies have suggested significant spontaneous internal wave generation near

the ocean surface and energy transfers to and from these waves in the ocean interior. Spontaneous generation

is the emission of waves by unbalanced, large Rossby number flows in the absence of direct forcing. Here, the

authors’ previous work is extended to investigate where and how these waves exchange energy with the

nonwave (mean) flow. A novel double-filtering technique is adopted to separate first the wave and nonwave

fields, then the individual upward- and downward-propagating wave fields, and thereby identify the pathways

of energy transfer. These energy transfers are dominated by the interaction of the waves with the vertical

shear in the mean flow. Spontaneously generated waves are found to be oriented such that the downward-

propagating wave is amplified by the mean shear. The internal waves propagate through the entire model

depth while dissipating energy and reflect back upward. The now-upward-propagating waves have the op-

posite sign interaction with the mean shear and decay, losing most of their energy to the nonwave flow in the

upper 500m. Overall, in the simulations described here, approximately 30% of the wave energy is dissipated,

and 70% is returned to the mean flow. The apparent preferential orientation of spontaneous generation

suggests a potentially unique role for these waves in the ocean energy budget in uniformly drawing net energy

from mean flow in the upper-ocean interior and transporting it to depth.

1. Introduction

The generation of internal waves is a vital mechanism

by which energy can be fluxed downscale and ultimately

support mixing in the deep ocean (Wunsch and Ferrari

2004). The major sources of internal waves in the ocean

are tidal flows over rough bottom topography and high-

frequency winds blowing over the ocean surface (Munk

1981). Geostrophic flows interacting with bottom to-

pography are also able to generate internal lee waves

(Nikurashin and Ferrari 2011). In addition, internal

waves can be generated through forced imbalances

triggering fluid dynamical instabilities, which then ra-

diate waves (e.g., Plougonven and Zeitlin 2009; Ribstein

et al. 2014; Grisouard et al. 2016). Waves are also gen-

erated ‘‘spontaneously’’ near the ocean surface without

any external forcing, imbalance, or topographic in-

teractions in situations where the large-scale balanced

flow breaks down, often associated with frontogenesis

(e.g., Nagai et al. 2015; Shakespeare and Taylor 2016;

Shakespeare and Hogg 2017a). Here, we focus on such

spontaneous generation and extend the analysis of

Shakespeare and Hogg (2017a) to resolve the life cycle

of these internal waves.

In addition to the spontaneous generation of inter-

nal waves, energy can be transferred to preexisting

waves from balanced flows or from balanced flows to

the wave field. Such mean-to-wave (MTW) exchanges

play a dominant role in the wave energy budget of

Shakespeare and Hogg (2017a) and in the present work.

Earlier work investigated the interactions of a linear

wave field with various background flows (e.g., Eliassen

and Palm 1961; Jones 1967). In their seminal paper,

Eliassen and Palm (1961) showed that internal waves (in

their case, steady lee waves) will gain (lose) energy

from a shear flow that increases (decreases) with height

above topography but have unchanged pseudomo-

mentum flux. This interaction of internal waves with the

mean shear is identified as the dominant mean-to-wave

energy transfer in our simulations and is discussed in

detail in section 4.

The crucial element of the analysis of Shakespeare

andHogg (2017a) [and, previously, Nagai et al. (2015)] is

the application of a Lagrangian filter to separate the

‘‘wave’’ and ‘‘nonwave parts’’ of the flow. Consistent
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with previous work, here we will use the terms ‘‘non-

wave’’ and ‘‘mean’’ interchangeably to describe all flow

that is not internal waves, including turbulent flow such

as jets and eddies. The Lagrangian filter is based on the

definition of an internal wave as a motion of Lagrangian

frequency (frequency following the local flow) exceed-

ing the inertial frequency (e.g., Polzin and Lvov 2011)

and addresses the issue of significant Doppler shifting

of the wave frequency by the nonwave flow, which is

common in regions of spontaneous generation where

flow velocities are large (e.g., Shakespeare and Taylor

2016). The robust identification of the wave field per-

mitted Shakespeare and Hogg (2017a) to determine the

fluxes between the wave and the nonwave flow and

thereby form a balanced energy budget for the internal

wave field. Shakespeare andHogg (2017a) reported very

large fluxes of energy (up to 90mWm22) into the wave

field near fronts and filaments in the surface 50m of their

model. However, much of this generation was com-

pensated by neighboring large fluxes of energy in the

reverse direction, from the waves to the nonwave flow. It

was not clear from their results the pathway of the wave

energy between the sources and neighboring sinks of

energy. Here, we are able to extend the analysis of the

simulated wave field to resolve this energy pathway.

Our methodology is to apply a secondary filter to the

(already Lagrangian filtered) wave field to separate

upward- and downward-propagating waves. We can

then independently calculate the energy exchanges of

up- and downgoing waves with the mean flow. We will

show that the energy flux is almost entirely from the

mean flow to downgoing waves and from upgoing waves

back to the mean flow. That is, downgoing waves are

spontaneously generated and then amplified by the

mean flow and reflect off the bottom, and the resultant

upgoing waves lose energy back to the mean flow. Fur-

thermore, we can track the dissipation of wave energy of

the down- and upgoing waves over the ocean depth,

allowing us to fully elucidate the life cycle of the spon-

taneously generated internal waves. We perform this

analysis for three different simulations with different

bottom boundaries, including flat and rough topogra-

phies and the case with a viscous sponge layer studied in

Shakespeare and Hogg (2017a). The life cycle of the

internal waves is similar in all three cases, but with im-

portant differences arising due to differing wave re-

flections and dissipation near the ocean bottom.

The paper is set out as follows. In section 2, we de-

scribe the three model configurations and the filtering

methodology. In section 3b, we formulate balanced en-

ergy budgets for the three simulations and identify the

sources and sinks of down- and upgoing wave energy.

We then use these results (section 3c) to describe the

complete life cycle of the internal waves, from spontaneous

generation to eventual reabsorption or dissipation. The spa-

tial distribution of the energy sources and sinks (section 3d)

motivates a detailed discussion (section 4) of the mechanism

of energy transfer between thewave andnonwaveflow.Last,

in section 5, we reflect on the implications of our results for

the role and significanceof spontaneously generatedwaves in

the ocean energy budget.

2. Methods

a. Model configurations

The basic model configuration is identical to that of

Shakespeare and Hogg (2017a). We use the Massachu-

setts Institute of Technology general circulation model

(MITgcm; Marshall et al. 1997) to simulate the hydro-

static primitive equations in a 500-km square, zonally

reentrant, f-plane channel at 200-m horizontal resolu-

tion. The vertical grid consists of 200 points with grid

spacing of 1.5m at the surface, increasing to 40m at

middepth and reducing to 20m in the deepest 1 km of

the domain. All simulations are forced by ‘‘sponges’’ of

30-km width just inside the northern and southern

boundaries, where densities (temperatures; salinity is

constant) are restored to specified profiles on a 10-day

time scale. No surface wind stresses or surface buoyancy

fluxes are imposed. The vertical grid and relaxation

profiles are shown in Shakespeare and Hogg (2017a, see

Fig. 1 therein). Subgrid turbulence is parameterized via

Laplacian diffusion and viscosity. In the absence of

boundary fluxes, there is no requirement for significant

vertical viscosity or diffusivity, and these parameters are

set to anegligible valueeverywhere (Ay5 ky5 1026m2s21).

Guided by the results of Shakespeare andHogg (2017b),

in order to maintain stability in the model interior with

negligible spurious wave decay, we apply a uniform

horizontal diffusivity of kh 5 0.1m2 s21 (constant over

the entire domain). Horizontal viscosity is employed near

boundaries to maintain model stability, as described

below.

Here, we consider three different simulations: (A) flat

bottom at 3700-m depth, (B) rough bottom with a mean

depth of 3700m, and (C) flat bottom at 3700m with a

viscous sponge below 2500m (the simulation described

in Shakespeare and Hogg 2017a). Snapshots of the sur-

face vorticity from simulations (A) and (B) are shown in

Figs. 1a and 1b, respectively—both simulations have an

active submesoscale, but the large-scale flow is signifi-

cantly modified by the presence of topography. The to-

pography in simulation (B) is shown in Fig. 1e and

consists of a smooth Gaussian hill 800m high, over-

laid with small-scale random roughness on wavelengths

from 10 to 100km and root-mean-square height of 300m.
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The combination of the large smooth hill (seamount)

and the small-scale roughness has been chosen to si-

multaneously modify both the momentum balance of

the large-scale flow and the reflections of internal waves,

compared with the flat-bottomed simulations. The to-

pography is flat in the temperature-restoring sponge

regions at the northern and southern edges of the do-

main. In simulations (A) and (B), the horizontal vis-

cosity is set toAh5 3m2 s21 near the surface and bottom

and decays with a 200-m e-folding scale to a negligible

interior value of 1026m2 s21. In simulation (C), the vis-

cosity is identical to the other simulations near the sur-

face but increases to 100m2 s21 in the sponge below

2500m. Themean viscosity as a function of depth in each

case is shown in Fig. 1c. The mean flow speed with depth

is shown in Fig. 1d for reference.

The three configurations have been carefully chosen

to isolate the process of spontaneous generation of

internal waves. The two flat-bottomed cases, (A) and

(C), have no other possible means of wave generation.

The difference between these two cases is expected to

be the amount of reflection versus dissipation near the

bottom boundary. The rough bottom case (B) has the

potential for lee wave generation as geostrophic cur-

rents and eddies flow over the bottom topography.

However, the scales of the topography have been

chosen such that the minimumwavelength is 10 km (or

maximum wavenumber is k 5 2p/104), and, hence,

bottom flow speeds must exceed U 5 f/k 5 0.2m s21

for linear lee wave generation (Bell 1975). Bottom

flow speeds are typically half this value or less; thus,

negligible linear lee wave generation is observed in

FIG. 1. Configuration and model state of the three simulations considered here. Snapshot of surface vorticity

(›xy 2 ›yu)/f for the (a) flat case and (b) rough case. (c) Mean horizontal viscosity with depth in the three

simulations: case (A): flat; case (B): rough; and case (C): flat sponge. (d) Mean flow speed with depth in the three

simulations. (e) Model depth in the rough case.
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the model, although the topography still gives rise to

a small but nonnegligible net transfer of energy to the

wave field (to be shown later). Such energy fluxes may

occur via a topography-induced amplification of preex-

isting waves, or else generation of new waves via flow

instabilities or nonlinear dynamics near topography.

b. Analysis methodology

Here, we describe the formulation of an energy bud-

get for an internal wave field to be applied in each of our

simulations in section 3b. Following the methodology of

Shakespeare and Hogg (2017a), we use a Lagrangian

filtering technique to separate the internal wave field

from the remainder of the nonwave flow. The wave field

is defined as Lagrangian frequencies exceeding the in-

ertial frequency f, analyzed for hourly data over a 1-

week period. For the details of this method, the reader is

referred to the appendix. This filtering method leads to a

clear spatiotemporal scale separation between the wave

and nonwave (mean) flow fields, such that the time and

horizontal space average (denoted h i) of a wave field

(denoted ~f) and a nonwave field (denotedf) is zero.With

this result, it is possible to formulate a closed energy

budget for the wave field. Following Shakespeare and

Hogg (2017a), the steady-state energy budget for thewave

field (in the absence of external forcing)may be derived as

05

�
B 1

ð0
2H

�
2D1F

MTW

�
dz

�
, (1)

where B is the bottom flux, D is the sign-definite dissipa-

tion of wave energy either viscously or throughmixing, and

F MTW is the energy flux from the mean to the wave field.
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where subscript h denotes the horizontal part, subscript

y the vertical part, k the diffusivity, A the viscosity, and

N2 5 h›zbi. Last, the energy transfer from the mean to

the wave field is
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The mean-to-wave conversion is, thus, composed of

three terms involving the interaction of the wave field

with different properties of the mean flow: (i) mean

vertical shear, (ii) mean horizontal buoyancy gradients

(involving potential energy exchange), and (iii) mean

horizontal shear.

It is insightful to nondimensionalize the mean-to-

wave flux expression (4). We assume that the mean

flow has a horizontal length scale L, vertical length scale

H, speedU, and j=hbj; fU/H. We assume that the wave

flow has frequency v, vertical wavenumber m, and

horizontal wavenumber k, such that ~u; u0, ~w; (k/m)u0,

and ~b;N2 ~w/v. With these scales, Eq. (4) may be writ-

ten as (all fields on the right-hand side assumed non-

dimensional and of order 1)
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where we have used the dispersion relation for linear

hydrostatic internal waves v5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1N2k2/m2

p
, Ro 5

U/( fL) is the Rossby number, and Fr 5 U/(NH) is the

Froude number. This scaling analysis indicates that (i)

the horizontal shear terms scale with Rossby number

and will, therefore, be largest near boundaries; (ii) the

vertical shear and potential terms will vanish for near-

inertial waves; and (iii) for sufficiently superinertial

waves, the vertical shear and potential terms scale with

the Froude number and are independent of Rossby

number. We will test these scalings below.

Here, we extend the energy budget analysis of

Shakespeare and Hogg (2017a): we filter the wave field

into upward- and downward-propagating components

and separate the dissipation (3) and mean-to-wave en-

ergy flux (4) into that associated with the upward and

downward waves. The up–down filtering is carried out

based on vertical phase speed as follows. First, the wave

field is Fourier transformed in time (t1v) and vertical

position (z1m) at each horizontal location. Signals

with frequency v . 0 and wavenumber m . 0 or with
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v , 0 and m , 0 may be identified as having vertical

phase speeds cp 52v/m, 0 and, consequently, vertical

group speeds greater than zero (upward propagating).

The remaining downward-propagating part of the signal

is masked, and the field is inverse Fourier transformed to

give the upward-propagating wave field in (x, y, z, t)

space. The dissipation andmean-to-wave fluxes can then

be independently computed for the upward- and

downward-traveling waves.1

3. Results

a. Frequency spectra

Figure 2 displays frequency spectra of the kinetic en-

ergy averaged along Lagrangian parcel trajectories for

each of the three simulations: (A) flat, (B) rough, and

(C) flat sponge. In each case, there is a clear spatio-

temporal scale separation between nonwave energy at

low frequencies and wave energy at frequencies great-

er than or equal to the inertial (as required for the

Lagrangian filtering method to be applicable). The

spectrum of the wave field is comparable in all three

simulations, with energy strongly concentrated at near-

inertial frequencies (approximately 90% of the energy is

at frequencies less than 1.3f ).

b. Global energy budgets

Figure 3 displays the domain-integrated wave energy

budgets for the three simulations: (A) flat (red), (B)

rough (green), and (C) flat sponge (blue). Despite the

differences in bottom boundaries, all simulations show

similar behavior. Energy is transferred into the down-

going wave field (dark shades) from the mean flow and

returned to the mean flow from the upgoing wave field

(light shades). Some wave energy is lost to dissipation

from both the up- and downgoing wave fields. The

bottom flux terms are small and negative in the flat

bottom cases and positive for the rough bottom case.

The residuals (shown as gray bars on the top row of

Fig. 3) are negligible in each case—that is, the wave

energy budget in each simulation is essentially balanced.

The dominant balance is between energy input to the

downgoing wave field—which includes both spontaneous

generation of waves and the amplification of those

waves—and energy loss from the upgoing wave field. This

balance implies a transfer of downgoing energy to up-

going energy, for example, via the reflection of down-

going waves off the bottom of the model ocean.

The vertical structure of the energy source and sink

terms for up- and downgoing wave energy is shown in

Fig. 4 for each of the simulations. The sum of the sources

and sinks at a given depth is shown in black. The surface

30 to 50m is dominated by very large energy fluxes into

the downgoing wave field. As described in Shakespeare

and Hogg (2017a), these fluxes are associated with

spontaneous generation at fronts and filaments un-

dergoing active frontogenesis. Below this surface gen-

eration region is a layer from 200- to 500-m depth that is

dominated by the dissipation of both down- and upgoing

waves (in similar amounts). Below this, from 500- to

2500-m depth, the energy budget is again dominated by

the mean-to-wave terms. The downgoing waves are

amplified by the mean flow, and the upgoing waves de-

cay. In all simulations, the amplification of the down-

going waves is larger, but by differing amounts. Below

2500-m depth, the details of the energy budget vary

depending on the different bottom boundary in each

case. The flat bottom simulation (A) has sizeable dissi-

pation of both up- and downgoing waves near the

smooth bottom boundary. The flat sponge simulation

(C) has very large dissipation of downgoing waves at the

upper edge of the sponge (;2700m). The rough bottom

simulation (B) has a mix of processes operating, in-

cluding energy gain from topographic interactions

(bottom flux; gray line), dissipation, and mean-to-wave

conversions. The mean-to-wave conversions flip signs in

this region, with downgoing waves losing energy and

FIG. 2. The kinetic energy spectrum (m2 s21) averaged along

particle trajectories as a function of Lagrangian frequency v

(normalized by f ). Internal waves are identified as signals to the

right of the gray line located at 0.9f; see Shakespeare and Hogg

(2017a).

1 In the general case, there are additional nonlinear wave–wave

interaction terms (e.g., Müller et al. 1986) that can transfer energy

between the upward- and downward-propagating waves, but these

are found to be negligible in the present simulations and are not

discussed here. However, nonlinear interactions between waves in

the same vertical direction may be significant but occur entirely

within the downward or upward wave fields and so are not iden-

tifiable in the present energetics analysis.
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upgoing waves gaining energy, owing to the reversal of

the mean vertical shear near topography (see Fig. 1d).

c. The internal wave life cycle

The vertical structure of the energy sources and sinks

shown in Fig. 4 motivates the identification of three re-

gions, each with distinct behavior: the upper ocean,

above 500m; the interior, between 500 and 2500m; and

the deep, below 2500m. The upper-ocean region is re-

sponsible for the generation and amplification of

downgoing waves, the absorption of upgoing waves, and

the dissipation of both up- and downgoing waves. The

interior region exhibits a balance between amplification

of downgoing waves and decay of upgoing waves. The

deep region behavior varies and is determined by the

bottom boundary (flat, rough, or sponge).

Figure 5 displays a schematic wave life cycle for each

of the simulations, with the sources and sinks of wave

energy identified as sums over the surface, interior, and

deep regions. The magnitudes are normalized in each

simulation by setting the generation and amplification of

downgoing wave energy in the surface region to 100

units, allowing for comparison of the percentage energy

gains and losses. The wave path shown applies for an

internal wave generated spontaneously at the surface,

which undergoes a single reflection off the ocean bottom

and propagates back into the upper ocean, where it

completely loses its remaining energy to the mean flow.

However, this is only a schematic picture: there is the

possibility of additional reflections off the surface

or bottom.

We first compare the wave life cycle in the flat bottom

simulations: (A) and (C). Themean flow (e.g., Fig. 1d) in

these cases is nearly identical, with differences in the

wave energy budget arising due to the presence of the

deep viscous sponge in (C) that absorbs additional,

mostly downgoing, wave energy. Of the 100 units of

generation/amplification in the top 500m, both (A) and

FIG. 4. Vertical profiles of the sources and sinks of wave energy (Wkg21) for the three

simulations: (a) flat (case A), (b) rough (case B), and (c) flat sponge (case C). The sum of all

sources and sinks at a given depth is shown in black.

FIG. 3. Domain-averaged wave energy budget for the three

simulations: flat (A; red), rough (B; green), and flat sponge (C; blue).

Energy fluxes associated with upgoing waves are rendered in

a lighter shade, and those associated with downgoing waves are

rendered in a darker shade. The net energy flux for each process

(up plus down) is shown as a gray box. The dominant balance is

between energy going into the downgoing waves from the mean

flow (MTW . 0) and energy being reabsorbed by the mean flow

from the upgoing waves (MTW, 0), with around 30% dissipating.
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(C) have a comparable dissipation of the downgoing

energy in the surface region of order 5%–10%. In both

cases, the downgoing wave field is amplified by themean

flow in the interior by 15%–20%, with minimal dissi-

pation. Differences arise in the deep region. In case (A)

with no sponge, the energy fluxes are comparable for

downgoing and reflected upgoing waves, with about 4

units of dissipation for each and equal and opposite

mean-to-wave terms. By contrast, case (C) with the

viscous sponge exhibits very large (15 unit) dissipation

of the downgoing wave energy and, therefore, negligible

mean-to-wave interactions because (it would appear)

the waves that would have interacted with themean flow

have instead dissipated. However, even with the sponge

present, there is still substantial reflection of waves off

the bottom; these waves then dissipate further as they

propagate back through the sponge and out of the deep

region. Of the 100 units of energy injected at the surface,

case (A) retains 99 units at this point in the cycle, and

case (C) retains 89.5. In both cases, the upgoing waves

lose a small amount of energy back to the mean flow as

they propagate through the interior, but this is an order

of magnitude less than the amplification seen by the

downgoing waves. The reason is that the downgoing

waves are generated by shearing and straining of sur-

face fronts and filaments and are, therefore, naturally

concentrated in regions of strong mean flows as they

propagate down. As the waves reflect off the bottom,

they spread out and tend to be less concentrated in these

regions and, consequently, lose less energy to the mean

flow because they are (on average) interacting with

weaker mean currents. In case (A), 97 units of upgoing

wave energy reach the surface layer, compared to 87

units in case (C). In both cases,O(10%) of this energy is

dissipated in the surface region, with the remainder

being reabsorbed by the mean flow.

The source and sink terms shown in Fig. 5 are in-

dividually summed in Table 1 to give an indication of the

net amount of reabsorption of wave energy by the mean

flow versus dissipation. Comparing cases (A) and (C),

the addition of the viscous sponge has very little effect

on the net magnitude of wave dissipation (see also

Fig. 3). Instead, the sponge reduces the amount of wave

energy being transferred to and from the mean flow

(by 0.02mWm22) such that the fraction of dissipation

increases (by 7%) but the net amount does not.

Let us now consider the rough bottom simulation (B)

and how it differs from the flat bottom simulation

without the sponge (A). The rough bottom simulation

has a small, positive bottom flux of 8 units instead of the

2-unit sink of energy to bottom drag on the flat bottom.

However, the net effect of the deep layer (excepting the

FIG. 5. Schematic life cycle showing energy sources and sinks for internal waves in each simulation: (a) flat (case A), (b) rough (case B),

and (c) flat sponge (case C). The ocean depth is divided into three regions: the upper ocean (above 500m), the deep (below 2500m), and

the interior (500–2500m). Red boxes indicate the surface spontaneous generation or interior amplification of internal waves by the

nonwave flow. All energy fluxes are normalized by setting the upper 500-m generation/amplification of downgoing waves equal to

100 units in each case. Blue boxes indicate the absorption of internal wave energy by the nonwave flow. Gray arrows indicate dissipation.

Arrows through the base of the ocean indicate (a),(c) wave energy loss through bottom drag (blue arrows) or (b) wave generation/

amplification in the case of rough topography (red arrow). The residual in the energy budget is indicated below each subfigure and is less

than 2% in all cases.
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bottom fluxes) in the rough bottom simulation is es-

sentially indistinguishable from the flat bottom simula-

tion. The rough topography acts to strengthen both the

percentage amplification and decay of down- and

upgoing wave energy, respectively, as a result of the

larger vertical shear in the interior (e.g., Fig. 1d).

However, the increase in the decay of upgoing waves in

the interior is disproportionately larger. The net interior

decay becomes only a factor of 2 smaller than the

downgoing amplification (210 vs119 units), rather than

the order of magnitude ratio (21.5 vs 115.5 units) seen

in the flat bottom simulation.

Collectively, the above results suggest that the effect

of rough topography is (i) a reduction in the energetic

asymmetry between spontaneously generated down-

going waves and their reflections and (ii) a net source of

energy from the bottom interaction rather than a net

sink. However, in all three simulations, regardless of the

bottom boundary, the net amount of dissipation remains

around 30% and the absorption of wave energy into the

mean flow about 70%, as a fraction of total generation

and amplification (see Table 1).

d. Spatial distribution of energy sources and sinks

Here, we focus on the rough bottom simulation (B) to

examine the spatial structure of the mean-to-wave en-

ergy fluxes and dissipation.

1) MEAN-TO-WAVE FLUXES

Figure 6 displays the net MTW conversion for

(Fig. 6a) the downgoing waves and (Fig. 6b) the upgoing

waves for a transect in the center of the channel at

y 5 250km. The MTW conversion is almost entirely into

the downgoing waves from the mean flow (red; greater

than zero) and from upgoing waves to the mean flow

(blue; less than zero), except near topography. The gray

contour on the plots encloses regions where the mean

flow speed exceeds 6 cm s21. These regions of large

mean flow are the only places where significant mean-

to-wave conversions occur. The largest mean-to-wave

conversions occur in the top 500m, where the mean

flows are strongest.

Figures 7a and 7b show the vertically summed MTW

conversions for the upper ocean, above 500m. Strong

generation and amplification (up to 6mWm22 for a

4-day average) of downgoing waves is present in re-

gions of strong mean flow, including fronts and the

periphery of eddies. The MTW conversion is espe-

cially large along thin fronts and filaments in the south

of the domain where the Rossby number (see Fig. 1b)

is high, consistent with spontaneous generation, as

TABLE 1. Dissipation vs reabsorption of generated/amplified

energy in the three simulations: (A) flat, (B) rough, and (C) flat

sponge. The generation/amplification is the sum of all red sources

(including bottom generation) in Fig. 5. MTW reabsorption is the

sum of all blue boxes. Dissipation is the sum of all gray arrows.

Case

Generation/

amplification

MTW

reabsorption Dissipation

(A) 117.5 units 82.5 units 28.5 units

0.15mWm22

(100%)

0.11mWm22

(70%)

0.04mWm22

(25%)

(B) 131.5 units 91.5 units 40 units

0.10mWm22

(100%)

0.06mWm22

(70%)

0.03mWm22

(30%)

(C) 119.5 units 77.5 units 38.5 units

0.13mWm22

(100%)

0.09mWm22

(65%)

0.04mWm22

(32%)

FIG. 6. The MTW energy conversion for (a) downward- and (b) upward-traveling waves at

y 5 250 km. Gray contours correspond to mean flow speeds of 6 cm s21. Bottom topography

along the transect is shaded in black.
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described by Shakespeare and Hogg (2017a). As wave

energy generated at the surface propagates down-

ward, it disperses and interacts with the deep-reaching

(geostrophic) mesoscale jets and eddies in the in-

terior. Thus, as shown in Fig. 7c, the MTW energy

conversion is smoother and broader in this interior

region but is still largest directly beneath the sites of

strong surface generation. The amplified downgoing

waves then reflect off the rough bottom, further

scattering the energy. As these reflected waves pass

back through the ocean interior, they now decay

where they encounter mean flows (Fig. 7d), but the

prior scattering and dispersal of the energy implies

that the upgoing waves, on average, encounter mean

flows less often than the downgoing waves and,

therefore, experience less energy exchange with the

mean flow. Similarly, the reabsorption of upgoing

waves into the surface mean flow (Fig. 7b), while still

concentrated in the same regions, tends to be

smoother and weaker than the generation and ener-

gization of downgoing waves (Fig. 7a).

Thus far, we have only considered the total MTW

energy conversion for the waves. In Fig. 8, we show the

downgoing MTW energy conversion for the same tran-

sect as in Fig. 6, but split into the (Fig. 8b) vertical shear/

potential and (Fig. 8c) horizontal shear contributions

identified in Eq. (4). Equivalent behavior is seen for the

components of the upgoing MTW energy conversion

(not shown). According to our earlier scaling analysis

(5), the horizontal shear terms should scale with the

Rossby number (Fig. 8d) and the vertical shear/potential

terms with the Froude number (Fig. 8a). We observe

that the vertical shear/potential terms do, indeed, scale

in both sign and magnitude with the local Froude

number of the mean flow, Fr5 ›z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1 y2

p
/N. The small

regions of negative MTW conversion in the upper 500m

in Fig. 8b can now be identified with regions where the

Froude number changes sign—that is, where the vertical

shear reverses (the flow speed increases with depth).

The horizontal shear MTW terms are negligible, in

comparison to the other MTW terms, and show no sig-

nificant correlation in sign or magnitude with the local

FIG. 7. The MTW energy conversion (mWm22) for (a),(c) downward- and (b),(d) upward-traveling waves

integrated over the upper-ocean and interior regions for the rough bottom simulation.
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Rossby number, contrary to the scaling. We discuss the

reasons for these differences in section 4.

2) DISSIPATION

Figure 9 displays the net wave dissipation for the

(Fig. 9a) down- and (Fig. 9b) upgoing waves for the same

transect as previously (y 5 250km). At first order, the

magnitude of the dissipation is controlled by the vertical

structure of the horizontal viscosity in the model, which

is elevated within a few hundred meters of the bound-

aries (necessary for model stability; see Fig. 1c), giving

rise to ‘‘bands’’ of elevated near-boundary dissipation in

Fig. 9 for both down- and upgoing waves. However, the

downgoing dissipation is also an order of magnitude

larger in the regions of strong mean flow, where the in-

ternal waves are being generated and amplified, and

enhanced dissipation is visible in these regions up to

1500m above the boundary, outside the band of ele-

vated viscosity (e.g., downgoing waves at x 5 320 km in

Fig. 9a). The dissipation of the upgoing wave field differs

from the downgoing in the interior, in that its structure is

strongly influenced by the bottom topography (which

affects reflections). Bands of enhanced dissipation are

seen above some topographic features, for example, at

x 5 30km in Fig. 9b. Both the down- and upgoing dis-

sipation also show chimneylike features below the sur-

face generation sites (cf. Fig. 8) associated with elevated

wave energy in these regions.

Figure 10 shows the vertically integrated dissipation

for down- and upgoing waves in the upper, interior, and

deep regions defined previously. The dissipation of

downgoing waves in the upper ocean is strongly con-

centrated along the fronts where the waves are gener-

ated. The dissipation of upgoing waves in the same

upper-ocean region is weaker along these fronts but

stronger in the (much larger) regions of weaker mean

flow in between the fronts. Thus, the total dissipation of

upgoing waves is almost double that of downgoing

FIG. 8. The (a) Froude number Fr5 ›z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1 y2

p
/N and MTW energy conversion for down-

ward-traveling waves due to the (b) vertical shear and potential terms, (c) horizontal shear

terms at y 5 250 km, and (d) Rossby number Ro5 (›xy2 ›yu)/f . The horizontal shear terms

are negligible, except near the surface. As expected, the vertical shear and potential terms scale

with the Froude number. The60.1 contours for the Froude and Rossby numbers are indicated

by dashed lines.
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waves in this region (as per Fig. 5), despite the lower

peak magnitudes. Dissipation of both down- and up-

going waves in the interior region is very weak. The

dissipation of downgoing energy in this region is collo-

cated with the energization of the waves by the mean

shear (Fig. 7c), suggesting that a small amount (;3%) of

the increase in wave energy goes directly to dissipation.

In contrast to the relatively smooth downgoing dissipa-

tion, the upgoing dissipation has a clear signal from the

rough topography. The dissipation in the deep region

(Figs. 10e,d) is strongly influenced by topography for

both the up- and downgoing wave fields.

4. Discussion

Our model results show a significant, essentially

single-signed flux of mean energy into downward-

propagating internal waves in regions of strong mean

shear down to depths of 2500m. Furthermore, the re-

flected upward-propagating waves have an opposing

(but weaker) single-signed flux of wave energy back into

the mean flow in the same regions. In the surface ocean

above a few hundred meters’ depth, the flux into

downgoing waves is readily associated with spontaneous

generation at sheared and strained surface density fronts

and filaments (Shakespeare andHogg 2017a). However,

the amplification of downgoing waves at depth and the

decay/absorption of reflected upgoing waves is a distinct

process that we investigate below.

The opposite sign and collocation of the mean-to-

wave conversions for the down- and reflected upgoing

waves indicates that the vertical propagation direction

of the wave controls the direction of energy transfer to/

from the same mean flow. As shown in Fig. 8, away from

boundaries, the mean-to-wave conversion (4) is entirely

dominated by the vertical shear and potential terms, and

it scales with the Froude number. In these regions, the

mean flow is essentially geostrophic, and the vertical

mean-to-wave conversion may be reduced to a single

term dependent on the mean shear by expressing the

horizontal mean buoyancy gradient in terms of the

shear, =hb5 f ẑ3 ›zuh,

F vsh
MTW 52

��
~u ~w2 ~y ~b

f

N2

	
›u

›z
1

�
~y ~w1 ~u~b

f

N2

	
›y

›z

�

52F
EP

� ›uh

›z
, (6)

where F EP is the Eliassen–Palm (EP) flux (Eliassen and

Palm 1961). In the simplest case, where the shear is

uniform in space and time, and the wave in question is a

plane wave propagating in the x direction exp[i(kx 1
mz 2 vt)], it is simple to show that

F vsh
MTW ;2 ~K

v2 2 f 2

v2 1 f 2
k

m

›u

›z
, (7)

where ~K5 (j~uj2 1 j~yj2)/2 is the wave kinetic energy,

v is the frequency, and k and m are the horizontal

and vertical wavenumbers, respectively.2 Thus, a wave

FIG. 9. The total dissipation (viscous dissipation andmixing) of (a) downward- and (b) upward-

traveling waves at y 5 250 km.

2 Note that while (7) gives the correct sign of energy transfer for a

given propagation direction, it does not account for the effect of the

shear on the wave itself in modifying the frequency and vertical

wavenumber. The complete solution to the problem of a wave

propagating in a linear shear is discussed in Eliassen and Palm

(1961), Yamanaka and Tanaka (1984), and Xie and Vanneste

(2017), in varying forms. The key result is that (for small amplifi-

cations, in the absence of critical layer effects) the wave activity flux

F EP is constant, but the wave energy flux increases proportional to

the change in mean flow speed (e.g., Eliassen and Palm 1961).
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propagating downward (m , 0) and with the shear flow

(k›zu. 0) will amplify, whereas a wave propagating

down and against the shear flow will decay. The reverse

behavior occurs for a wave propagating upward (m. 0).

The implication of this result is that waves are almost

exclusively propagating with the local mean flow in the

FIG. 10. The dissipation (mWm22) for (left) downward- and (right) upward-traveling waves integrated over the

(top) upper-ocean, (middle) interior, and (bottom) deep regions.
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present simulations. Specifically, waves are propagat-

ing with the flow and amplifying as they travel down-

ward. The waves will likely still be traveling with the

flow as they reflect back up, assuming that the scales of

the waves are small, compared to the scale of the mean

flow, such that the horizontal distance traveled is not

too great and the waves remain in a similar large-scale

flow environment. Thus, the waves decay as they travel

upward. However, the decay of the upward waves is

smaller than the amplification of the downward waves

because the upward waves are less concentrated in the

regions of strongest mean shear. The fact that waves

are propagating with the mean flow also explains the

smallness of the horizontal shear MTW terms (e.g.,

Fig. 8c). With the same assumptions as above (i.e.,

geostrophic mean flow and plane wave propagating in x),

the MTW conversion associated with the horizontal shear

may be written as

F hsh
MTW ; ~K

1

2

v2 2 f 2

v2 1 f 2
›y

›y
. (8)

Thus, if the waves are propagating (in x) with the mean

flow, we will have y/ 0 and, hence, F hsh
MTW / 0, as in

Fig. 8c.

The mechanism of mean-to-wave energy exchange

through the vertical shear is most easily understood in

terms of conservation of wave action3A5E/v, whereE

is the wave energy, and v is the Eulerian frequency

(Bretherton and Garrett 1968). The mechanism is in-

dicated in Fig. 11. An internal wave propagating in a

sheared mean flow sees a Doppler-shifted Eulerian

frequency ofV5v2ku(z), where k is the wavenumber

in the direction of the local mean flow u(z). Thus, for a

wave traveling in the direction of a decreasing mean

flow, the Eulerian frequency of the wave will increase

with depth/time. For action to be conserved, that wave

must have a comparable increase in its energy—that is,

an amplification—as seen in the simulations. In contrast,

the reflection of this downgoing wave will travel upward

and with the shear flow, and, thus, its frequency and

energy will instead decrease with height/time. However,

the fact that this upgoing decay is weaker than the

downgoing amplification (e.g., Fig. 5; despite compara-

ble energy fluxes) indicates that the upgoing waves are,

on average, encountering weaker shear, especially in the

flat-bottomed simulations.

As noted above, the largely uniform amplification

of downgoing waves implies that they are almost

exclusively propagating with the local mean flow in the

present simulations. The absence of any decay of

downgoing waves means that spontaneous generation

must be acting to only generate waves in the direction

of the local mean flow. Our conclusion is that sponta-

neous wave generation in other orientations is sup-

pressed by the presence of mean shear, and,

consequently, such waves are not observed in the

simulations. This behavior appears to be a feature as-

sociated with spontaneous generation: the flow tends to

spontaneously generate wave energy in an orientation

whereby waves are locally amplified by vertical shear.

We hypothesize that spontaneously generated waves

are unique in this respect and that externally forced

waves (e.g., via winds or tides) would behave differ-

ently, in that waves in both directions would be ob-

served, but with one direction amplified and the other

decayed. Indeed, simulations involving wind-forced

internal waves (Barkan et al. 2017; Taylor and Straub

2016) show sizeable energy exchange through the

horizontal shear MTW terms (which are negligible in

our simulations), implying that [per Eq. (8)] such

forced waves are not uniformly propagating with the

local flow. However, the strongest mean-to-wave en-

ergy fluxes in those studies occur over a comparable

depth range of 0–500m, and the waves also extract

energy (on average) from the mean flow. These pre-

vious studies, thus, support our hypothesis as to the

uniqueness of spontaneous generation in terms of the

close connection between wave propagation direction

and mean shear.

FIG. 11. Schematic of the amplification (decay) of wave energy in

a mean shear flow u(z) for waves propagating with (against) the

flow, following Eliassen and Palm (1961); Yamanaka and Tanaka

(1984); and Xie and Vanneste (2017), among others. The basic

principle is that wave action A 5 E/v, where E is the energy and

v the Eulerian frequency, is conserved so that wave energy scales

with frequency. Parameter V is the Lagrangian (intrinsic) fre-

quency of the wave, andU0 5u(0) is the change in velocity seen by

the wave. For small amplifications (e.g., 10%–20%, as seen in the

present simulations), the fractional increase in energy is just kU0/V.

3 The authors would like to acknowledgeG.Wagner for pointing

this out.
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5. Conclusions

Our results suggest that internal waves are sponta-

neously generated in locations and with appropriate

scales and orientations, such that they draw net energy

from the mean shear throughout the upper and interior

ocean as they propagate downward. The Froude num-

ber, rather than the Rossby number, is the non-

dimensional parameter governing the strength of the

interaction of these waves with the mean flow [i.e., Eq.

(5)]. Thus, spontaneously generated internal waves may

play a unique role in the ocean wave energy budget and

potentially have a large source of energy available to

them. Total spontaneous generation and amplification

in our simulations is of order 0.1mWm22 averaged over

the entire model domain, but further study is necessary

to determine how these magnitudes will change with

higher model resolution and scale to the real world.

Theories of spontaneous generation (Shakespeare and

Taylor 2016, 2014) predict an exponential increase in

wave generation as fronts and filaments (which are

limited by model resolution and viscous parameters)

approach smaller scales. Furthermore, observations

(e.g., Shcherbina et al. 2013) indicate that parameter

regime of the ocean may be more extreme than that

modeled here and, hence, has the potential for stronger

frontogenesis and spontaneous generation. For instance,

Shcherbina et al. (2013) report a mean strain rate4 of

0.8f versus a mean value of 0.14f in the present (rough

bottomed) simulation.

The internal waves in our simulations propagate over

the full depth of the model and reflect off the bottom. In

all our simulations, approximately 70% of the wave

energy is returned to the mean flow upon reflection,

mostly in the upper 500m, with the remainder dissipated

by either the downgoing or reflected upgoing waves.

Thus, our simulations show that internal waves can

continually exchange energy with the mean flow. This

behavior is contrary to the current paradigm that in-

ternal waves predominately flux energy downscale toward

dissipation. Instead, here, the waves predominately flux

energy upscale, back to the (largely balanced) jets and

eddies of the mean flow.

As a result, it appears that spontaneously gener-

ated waves, in isolation, are a relatively inefficient

means of energy dissipation and, hence, of driving

ocean mixing. However, the tendency of the waves to

propagate through the ocean depth and interact with

the ocean bottom suggests that in the presence of an

additional bottom source of internal waves, such as

small-scale internal tides or lee waves, the wave fields

could interact to trigger or enhance deep-ocean

mixing. These questions remain a topic for future

research.
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APPENDIX

Quantifying Errors Associated with the Lagrangian
Filtering Method

As described in Shakespeare and Hogg (2017a), the

Lagrangian filtering method involves the following

steps:

1) Particle tracking. Initialize one Lagrangian particle at

every model grid point and compute the path of these

particles over the (1 week) analysis period. Only

horizontal velocities are used for particle advection;

vertical motion may be neglected (Shakespeare and

Hogg 2017a).

2) Forward interpolation. At each time, (linearly) in-

terpolate fields of interest (e.g., u, y, w, and p) from

the model grid to the particle locations at that time.

3) Filtering. Perform frequency filtering for each particle.

4) Reverse interpolation. At each time, interpolate the

filtered fields from the scattered particle locations

back to the model grid. We use the MATLAB

scatteredInterpolant() function with linear interpo-

lation to perform this step.

5) Analysis. Compute required energy fluxes.

As time progresses, the particle locations as computed in

step (1) become more concentrated in some regions

(increasing resolution) and less concentrated (de-

creasing resolution) in others. The inhomogeneity of

particles is greater for larger variations in flow speed

(e.g., near the surface) and at later times. Sampling er-

rors in the above procedure are potentially introduced in

step (4) due to the degrading of the effective resolution

in certain locations. To quantify these errors, we con-

sider the case with the most inhomogeneous particle

distribution: the surface layer at the end of the 1-week

analysis period.

As an example, we consider the flow speed

U5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1 y2

p
at this time, as pictured in Fig. A14Defined as s5 [(›xu2 ›yy)

2 1 (›xu1 ›yy)
2]1/2.
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[from the flat topography simulation (A)].We interpolate

the flow speed to the Lagrangian parcel locations at this

time as per (2), then, without filtering, reverse interpo-

late back to the model grid as per (4). The resulting

forward-/reverse-interpolated flow speedU* is shown in

Fig. A1b and is (by eye) indistinguishable from the

original. The difference between the original and in-

terpolated fields U2U* is shown in Fig. A1c and

quantifies the error associated with the Lagrangian

method. The errors are largest along the strong surface

jets, with magnitudes of a few percent (1 to 3 cm s21).

Thedomainmeanerror ismeanjU*2Uj/mean(U)5 0:004,

or 0.4%, which gives an estimate of the error in hori-

zontally averaged quantities, such as domain-averaged

energy fluxes. This error is negligible.

The Lagrangian particle concentration after 1 week is

plotted in Fig. A1d, relative to the initial concentration

(at time zero, the concentration is 1 everywhere). The

relative concentration C is computed by counting the

number of particles in each 1 km 3 1 km box and di-

viding by the original number of parcels in the region

(25, or one parcel per 200m 3 200m grid cell). The ef-

fective resolution for a given particle concentration is

r5 200/
ffiffiffiffi
C

p
. It is interesting to note that the regions with

the lowest particle concentrations (white regions in

Fig. A1d) do not necessarily correspond to the regions

with the largest errors (Fig. A1c). Instead, low concen-

tration seems common in largely quiescent regions near

the ends of jets (e.g., x 5 y 5 175 km). The cumulative

density function of particle concentration is also shown

FIG. A1. Evaluation of Lagrangian forward and reverse interpolation. (a) The surface flow speed (m s21) from

the model 1 week into the analysis period. (b) The flow speed (linearly) interpolated to Lagrangian particles then

reverse interpolated from the scattered points back to the model grid. (c) The difference between (a) and (b).

(d) The Lagrangian particle concentration at this time, relative to the initial uniform concentration.
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in Fig. A2 and indicates that 99% of the domain has a

particle concentration of greater than 0.1 (or, equiva-

lently, an effective resolution of better than 632m).

The above results demonstrate that the Lagrangian

filtering method is robust over the time scales of interest

and not subject to significant sampling error.
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